Abstract

The so-called "GeV-excess" of the diffuse Galactic gamma-ray emission is studied with a spectral template fit based on energy spectra. The spectral templates can be obtained in a data-driven way from the gamma-ray data, which avoids the use of emissivity models to subtract the standardbackground processes from the data. Instead, one can determine these backgrounds simultaneously with any "signals" in any sky direction, including the Galactic disk and the Galactic center. Using the spectral template fit two hypothesis of the "GeV-excess" were tested: the dark matter (DM) hypothesis assuming the excess is caused by DM annihilation and the molecular cloud (MC) hypothesis assuming the "GeV-excess" is related to a depletion of gamma-rays below 2 GeV, as is directly observed in the Central Molecular Zone (CMZ). Both hypotheses provide acceptable fits, if one considers a limited field-of-view centered within 20$^\circ$ around the Galactic center and applies cuts on the energy range and/or excludes low latitudes, cuts typically applied by the proponents of the DM hypothesis. However, if one considers the whole gamma-ray sky and includes gamma-ray energies up to 100 GeV we find that the MC hypothesis is preferred over the DM hypothesis for several reasons: i) The MC hypothesis provides significantly better fits; ii) The morphology of the "GeV-excess" follows the morphology of the CO-maps, a tracer of MCs, i.e. there exists a strong "GeV-excess" in the Galactic disk also at large longitudes; iii) The massive CMZ with a rectangular field-of-view of $l \times b = 3.5^{\circ} \times 0.5^{\circ}$ shows the maximum of the energy flux per log bin in the diffuse gamma-ray spectrum at 2 GeV, i.e. the "GeV-excess", already in the raw data without any analysis. The rectangular profile contradicts the spherical morphology expected for DM annihilation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call