Abstract

Progesterone receptors exist in two molecular forms commonly designated as "A" and "B" forms, the relative proportion of which can vary among species. In murine tissues, progesterone receptor exists predominantly as the "A" form which, in mammary glands, is also under developmental regulation [Shyamala et al. (1990) Endocrinology 126, 2882-2889]. Therefore, toward resolving the molecular mechanisms responsible for the predominance of the "A" form of progesterone receptor in murine tissues and its developmental regulation, we have isolated, sequenced, and expressed the complementary DNA corresponding to the mouse progesterone receptor. Nucleotide sequence analysis revealed two in-frame ATG codons, such that the largest open reading frame beginning with the first codon could encode a polypeptide with an estimated molecular weight of 99,089, while the shorter open reading frame beginning with the second codon could produce a polypeptide with a calculated molecular weight of 81,829. The murine progesterone receptor had complete identity for the DNA binding domain of human and rabbit progesterone receptors and 99% homology with the chicken progesterone receptor; for the steroid binding domain, it had 96% homology with human and rabbit progesterone receptors and 86% homology with chicken progesterone receptors. Expression of the complete complementary DNA in Chinese hamster ovary cells yielded a protein which bound the synthetic progestin promegestone with an equilibrium dissociation constant of approximately 1 nM, and in Western blot analyses revealed both "A" and "B" forms of immunoreactive receptor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call