Abstract

3alpha-Hydroxysteroid dehydrogenase/carbonyl reductase (3alpha-HSD/CR) from Comamonas testosteroni, a bacterium that is able to grow on steroids as the sole carbon source, catalyzes the oxidoreduction at position 3 of a variety of C19-27 steroids and the carbonyl reduction of a variety of nonsteroidal aldehydes and ketones. The gene of this steroid-inducible 3alpha-HSD/CR was cloned by screening a C. testosteroni gene bank with a homologous DNA probe that was obtained by polymerase chain reaction with two degenerative primers based on the N-terminal sequence of the purified enzyme. The 3alpha-HSD/CR gene is 774 base pairs long, and the deduced amino acid sequence comprises 258 residues with a calculated molecular mass of 26.4 kDa. A homology search revealed that amino acid sequences highly conserved in the short-chain dehydrogenase/reductase (SDR) superfamily are present in 3alpha-HSD/CR. Two consensus sequences of the SDR superfamily were found, an N-terminal Gly-X-X-X-Gly-X-Gly cofactor-binding motif and a Tyr-X-X-X-Lys segment (residues 155-159 in the 3alpha-HSD/CR sequence) essential for catalytic activity of SDR proteins. 3alpha-HSD/CR was overexpressed and purified to homogeneity, and its activity was determined for steroid and nonsteroidal carbonyl substrates. These results suggest that inducible 3alpha-HSD/CR from C. testosteroni is a novel member of the SDR superfamily.

Highlights

  • 3␣-Hydroxysteroid dehydrogenase/carbonyl reductase (3␣-HSD/CR) from Comamonas testosteroni, a bacterium that is able to grow on steroids as the sole carbon source, catalyzes the oxidoreduction at position 3 of a variety of C19–27 steroids and the carbonyl reduction of a variety of nonsteroidal aldehydes and ketones

  • Whereas the conserved Tyr-X-X-X-Lys catalytic motif is present in 3␣-HSD from C. testosteroni, Ala is at position 144 instead of Ser as in most other short-chain dehydrogenase/reductase (SDR)

  • We have identified and characterized 3␣HSD/CR from C. testosteroni as a new member of the SDR superfamily

Read more

Summary

Introduction

3␣-Hydroxysteroid dehydrogenase/carbonyl reductase (3␣-HSD/CR) from Comamonas testosteroni, a bacterium that is able to grow on steroids as the sole carbon source, catalyzes the oxidoreduction at position 3 of a variety of C19–27 steroids and the carbonyl reduction of a variety of nonsteroidal aldehydes and ketones. The gene of this steroid-inducible 3␣-HSD/CR was cloned by screening a C. testosteroni gene bank with a homologous DNA probe that was obtained by polymerase chain reaction with two degenerative primers based on the Nterminal sequence of the purified enzyme.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.