Abstract
Considerable diversity exists in porcine ear size, which is an important morphological feature of pig breeds. Previously, we localized four crucial candidate genes-high mobility group AT-hook 2 (HMGA2), LEM domain-containing 3 (LEMD3), methionine sulfoxide reductase B3 (MSRB3) and Wnt inhibitory factor 1 (WIF1)-on Sus Scrofa chromosome 5 affecting porcine ear size, then cloned LEMD3 and MSBR3. In this study, we performed rapid amplification of cDNA ends to obtain full-length cDNA sequences of 2338-bp WIF1 and 2998-bp HMGA2. Using quantitative real-time PCR, we revealed that WIF1 expression was highest in ear cartilage of 60-day-old pigs and that this is therefore a better candidate gene for ear size than HMGA2. We further screened coding sequence variants in both genes and identified only one missense mutation (WIF1:c.1167C>G) in a conserved epidermal growth factor-like domain from the mammalian WIF1 protein. The protein-altering mutation was significantly associated with ear size across the Large White×Minzhu hybrid and Beijing Black pig populations. When WIF1:c.1167C>G was included as fixed effect in the model to re-run a genome-wide association study in the Large White×Minzhu intercross population the P-value of the peak SNP on SSC5 from re-running the genome-wide association study dropped from 2.45E-12 to 7.33E-05. Taken together, the WIF1:c.1167C>G could be an important mutation associated with ear size. Our findings provide helpful information for further studies of the molecular mechanisms controlling porcine ear size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.