Abstract

Recently, members of the MATE family have been implicated in aluminium (Al) tolerance by facilitating citrate efflux in plants. The aim of the present work was to perform a molecular characterisation of the MATE2 gene in bread wheat. Here, we cloned a member of the MATE gene family in bread wheat and named it TaMATE2, which showed the typical secondary structure of MATE-type transporters maintaining all the 12 transmembrane domains. Amplification in Chinese Spring nulli-tetrasomic and ditelosomic lines revealed that TaMATE2 is located on the long arm of homoeologous group 1 chromosomes. The transcript expression of TaMATE2 homoeologues in two diverse bread wheat genotypes, Barbela 7/72/92 (Al-tolerant) and Anahuac (Al-sensitive), suggested that TaMATE2 is expressed in both root and shoot tissues of bread wheat, but mainly confined to root rather than shoot tissues. A time-course analysis of TaMATE2 homoeologue transcript expression revealed the Al responsive expression of TaMATE2 in root apices of the Al-tolerant genotype, Barbela 7/72/92. Considering the high similarity of TaMATE2 together with similar Al responsive expression pattern as of ScFRDL2 from rye and OsFRDL2 from rice, it is likely that TaMATE2 also encodes a citrate transporter. Furthermore, the TaMATE2-D homoeologue appears to be near the previously reported locus (wPt0077) on chromosome 1D for Al tolerance. In conclusion, molecular cloning of TaMATE2 homoeologues, particularly TaMATE2-D, provides a plausible candidate for Al tolerance in bread wheat that can be used for the development of more Al-tolerant cultivars in this staple crop.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call