Abstract
Nicotine biosynthesis in Nicotiana species requires an oxidative deamination of N-methylputrescine, catalyzed by N-methylputrescine oxidase (MPO). In a screen for tobacco genes that were down-regulated in a tobacco mutant with altered regulation of nicotine biosynthesis, we identified two homologous MPO cDNAs which encode diamine oxidases of a particular subclass. Tobacco MPO genes were expressed specifically in the root, and up-regulated by jasmonate treatment. Recombinant MPO protein expressed in Escherichia coli formed a homodimer and deaminated N-methylputrescine more efficiently than symmetrical diamines. These results indicate that MPO evolved from general diamine oxidases to function effectively in nicotine biosynthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.