Abstract

Osteoclasts are multinucleate giant cells playing key roles in bone resorption. These cells solubilize mineralized bone matrix by means of acid and protease action; however, the precise mechanism of this process is not well known. Recently, we succeeded in the isolation of pure osteoclasts from rabbit bones and constructed a cDNA library. Using a differential screening procedure, two genes expressed predominantly in osteoclasts compared with spleen cells were isolated (Tezuka, K., Sato, T., Kamioka, H., Nijweide, P. J., Tanaka, K., Matsuo, T., Ohta, M., Kurihara, N., Hakeda, Y., and Kumegawa, M. (1992) Biochem. Biophys. Res. Commun. 186, 911-917). One of them, OC-2, was found to encode a possible cysteine proteinase structurally related to cathepsins L and S. By in situ hybridization, OC-2 was confirmed to be expressed in osteoclasts in vivo. By Northern blot analysis, OC-2 was highly and preferentially expressed in osteoclasts compared with other tissues such as kidney, liver, spleen, and lung. The predominant expression of OC-2 in osteoclasts may suggest that OC-2 encodes a protein, possibly a cysteine proteinase, that plays an important role in osteoclastic bone resorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.