Abstract
Proliferating cells express genes active in cell cycle control. The modulation of control genes and factors are required to maintain critical cell cycle activities. We used a set of monoclonal antibodies prepared against DNA-binding proteins from Ehrlich ascites tumor cells in immunofluorescent microscopy to screen for proteins showing cell cycle-specific staining patterns. Here, we report cloning and characterizing of a novel mitogen-inducible gene from murine macrophages that predicts a cell cycle-specifically modulated nuclear protein of 38 kDa, designated p38-2G4. p38-2G4 displayed a speckled pattern of varying fluorescence intensity confined to the nucleus, but sparing the nucleoli. Strongly stained granules were observed between G1 and mid S phase, followed by a less abundant punctated arrangement toward the end of S phase, and negative fluorescence at the S/G2 transition. Thereafter, the nuclear staining reappeared. Additionally, p38-2G4 expression vanished in G0-arrested cells and was restored after release from growth arrest. p38-2G4 conserved in vertebrates by means of immunofluorescence data contains a number of putative phosphorylation sites, a cryptic nuclear localization signal, and an amphipathic helical domain. Our cDNA and its deduced amino acid sequence is related to a Schizosaccharomyces pombe gene encoding a 42-kDa protein that associates with curved DNA, suggesting that we have cloned the murine homologue of the S. pombe gene which defines a novel cell cycle-specifically modified and proliferation-associated nuclear protein in mammals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.