Abstract

The gene encoding HSP70 was isolated from Microptenus salmoides by homologous cloning and rapid amplification of cDNA ends (RACE). The HSP70 transcripts were 2116bp long and contained 1953 open reading frames encoding proteins of 650 amino acids with a molecular mass of 71.2kDa and theoretical isoelectric point of 5.22. The qRT-PCR analysis showed that the HSP70 gene was differentially expressed in various tissues under normal conditions, and the highest HSP70 level was observed in the spleen and the lowest levels in the muscle and heart. The clear time-dependent expression level of HSP70 was observed after bacterial challenge and heat stress. A significant increase in HSP70 expression level was detected and reached a maximum at 3h and 6h in liver, spleens and gill tissues after Aeromonas hydrophila infection and heat stress, respectively (P < 0.05). As time progressed, the expression of HSP70 transcript was downregulated and mostly dropped back to the original level at 48h. The concentration of cortisol, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) increased as the time of stress progressed, with the highest level found on 3h and later declined rapidly and reached to the control levels at the 48h. Those results suggested that HSP70 was involved in the immune response to bacterial challenge and heat stress. The cloning and expression analysis of the HSP70 provide theoretical basis to further study the mechanism of anti-adverseness in Microptenus salmoides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.