Abstract

Cryptosporidium spp. are the causative agents of diarrheal disease worldwide, but effective treatments are lacking. Cryptosporidium employs mucin-like glycoproteins with O-glycans to attach to and infect host intestinal epithelial cells. The Tn antigen (GalNAcα1-Ser/Thr) is an O-glycan essential for these processes, as Tn-specific lectins and a Tn-specific monoclonal antibody block attachment to and infection of host cells in vitro. The enzymes in Cryptosporidium catalyzing their synthesis, however, have not been studied. Previously, we identified four genes encoding putative UDP N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) in the genomes of three Cryptosporidium spp. Here we report the in silico analysis, cloning, expression, purification, and characterization of one of the four enzymes Cryptosporidium parvum (Cp)-ppGalNAc-T4. This enzyme contains the characteristic domains and motifs conserved in ppGalNAc-Ts and is expressed at multiple time points during in vitro infection. Recombinant soluble Cp-ppGalNAc-T4 was enzymatically active against an unmodified EA2 peptide suggesting that it may function as an “initiating” ppGalNAc-T. Cp-ppGalNAc-T4 also exhibited a strong preference for UDP-GalNAc over other nucleotide sugar donors and was active against unmodified and O-glycosylated versions of the C. parvum gp40-derived peptide, with a preference for the former, suggesting it may play a role in modifying this glycoprotein in vivo. Given the importance of mucin-type O-glycosylation in Cryptosporidium spp., the enzymes that catalyze their synthesis may serve as potential therapeutic targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call