Abstract

Three different genes named sn311, sn316 and sn285 were discovered by large-scale randomly sequencing the high quality cDNA library of the venom glands from Hydrophiinae Hydrophis cyanocinctus Daudin. Sequence analysis showed that these three genes encoded three different short chain α-neurotoxins of 81 amino acids, which contained a signal peptide of 21 amino acids and followed by a mature peptide of 60 amino acids. Amino acid comparison reveals that mature peptides of sn311 and sn316 are highly homologous, with the only variance at position 46, which is Lys 46 and Ser 46, respectively. Whereas the mature peptide of sn285 lacks the most conserved amino acids in short chain α-neurotoxins, Asp 31 and Arg 33. The coding sequences of three neurotoxins were cloned into a thioredoxin (TRX) fusion expression vector (pTRX) and expressed as soluble recombinant fusion proteins in E. coli. After purification, approximately 10 mg/l recombinant proteins with the purity up to 95% were obtained. These three recombinant proteins are designated as rSN311, rSN316 and rSN285, they have a molecular weight of 6.963, 6.920 and 6.756 kDa, respectively, which are similar to those predicted from amino acid sequences. LD 50 values of rSN311, rSN316 and rSN285 are 0.0827, 0.095, and 0.0647 mg/kg to mice, respectively. Studies on effects of these recombinant proteins on neuromuscular transmission were carried out, and results indicate that they all can produce prompt blockade of neuromuscular transmission, but display distinct biological activity characteristic individually. The results from UV-circular dichroism (CD) spectra indicate that they share similar secondary structure compared to other identified α-neurotoxins, and no significant structural differences in these recombinant proteins are observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.