Abstract

The receptor for activated protein kinase C1 (RACK1) belongs to the typical WD repeat family, which is extremely conservative and important in multiple signal transduction pathways related to growth and development that coordinate the intracellular role of various life activities. As a novel protein with versatile functions, it was found in a variety of organisms. In a previous study, we identified the RACK1 sequence of white shrimp from transcriptome data. In this study, we employed specialized bioinformatics software to conduct an in-depth analysis of EcRACK1 and compare its amino acid sequence homology with other crustaceans. Furthermore, we investigated the expression patterns of RACK1 at different developmental stages and tissues, as well as at various time points after exposure to Aroclor 1245, aiming to elucidate its function and potential response towards Aroclor 1245 exposure. The length of EcRACK1 is 957 nucleotides, which encodes 318 amino acids. Moreover, there were seven typical WD repeats in EcRACK1, which have more than a 96% sequence identity with the RACK1 proteins of Penaeus. The results of tissue expression and spatiotemporal expression showed that it was significantly increased in the II and IV stages, but had a significant tissue specificity in the hepatopancreas, spermary, and muscle tissues of E. carinicauda, adult stage. Compared to the control, EcRACK1 was significantly induced in E. carinicauda zoea larvae exposed to Aroclor 1254 for 6, 10, 20, and 30 d (p < 0.05). These results suggested that EcRACK1 may play an important role in the larval development and environmental defense of E. carinicauda.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call