Abstract

The tumor suppressor protein p53 is a critical component of cell cycle checkpoint responses. It upregulates the expression of cyclin-dependent kinase inhibitors in response to DNA damage and other cellular perturbations, and promotes apoptosis when DNA repair pathways are overwhelmed. In the present study, the cDNA of p53 from the orange-spotted grouper (Epinephelus coioides) (Ec-p53) was cloned by the combination of homology cloning and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of Ec-p53 was of 1921 bp, including an open reading frame (ORF) of 1143 bp encoding a polypeptide of 380 amino acids with predicted molecular weight of 42.3 kDa and theoretical isoelectric point of 7.0. Quantitative real-time PCR (qRT-PCR) assays revealed that Ec-p53 was ubiquitously expressed in all the examined tissues but with high levels in intestine and liver of the orange-spotted grouper. In addition, we measured the DNA damage and apoptosis in the blood cells and the percentage of dead and damaged blood cells. Our results suggest that oxidative stress and DNA damage occurred in grouper in conditions where the temperature was 15 ± 0.5 °C. Furthermore, qRT-PCR and western blot confirmed that low temperature stress induced upregulation of Ec-p53 in the mRNA and protein levels. These results suggest that low temperature-induced oxidative stress may cause DNA damage or apoptosis, and cooperatively stimulate the expression of Ec-p53, which plays a critical role in immune defense and antioxidant responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.