Abstract

We recently reported the purification and partial amino acid sequence of "surfactant convertase," a 72-kDa glycoprotein involved in the extracellular metabolism of lung surfactant (S. Krishnasamy, N. J. Gross, A. L. Teng, R. M. Schultz, and R. Dhand. Biochem. Biophys. Res. Commun. 235: 180-184, 1997). We report here the isolation of a cDNA clone encoding putative convertase from a mouse lung cDNA library. The cDNA spans a 1,836-bp sequence, with an open reading frame encoding 536 amino acid residues in the mature protein and an 18-amino acid signal peptide at the NH2 terminus. The deduced amino acid sequence matches the four partial amino acid sequences (68 residues) that were previously obtained from the purified protein. The deduced amino acid sequence contains an 18-amino acid residue signal peptide, a serine active site consensus sequence, a histidine consensus sequence, five potential N-linked glycosylation sites, and a COOH-terminal secretory-type sequence His-Thr-Glu-His-Lys. Primer-extension analysis revealed that transcription starts 29 nucleotides upstream from the start codon. Northern blot analysis of RNA isolated from various mouse organs showed that convertase is expressed in lung, kidney, and liver as a 1,800-nucleotide-long transcript. The nucleotide and amino acid sequences of putative convertase are 98% homologous with mouse liver carboxylesterase. It thus may be the first member of the carboxylesterase family (EC 3.1.1.1) to be expressed in lung parenchyma and the first with a known physiological function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.