Abstract

Apart from mitigating endoplasmic reticulum (ER) stress, vast studies have demonstrated the crucial role of inositol-requiring transmembrane kinase and endonuclease 1α (IRE1α) - spliced X-box binding protein 1 (XBP1s) signaling pathway in inflammatory response in mammals. In addition, palmitic acid (PA)-induced inflammation has been verified in large yellow croaker (Larimichthys crocea). However, whether the IRE1α-XBP1s signaling pathway is involved in inflammatory response caused by PA remains poorly studied in fish. The present study was aimed at elucidating the role of the IRE1α-XBP1s signaling pathway in inflammatory response induced by PA in primary hepatocytes from large yellow croaker. In the present study, the full-length cDNA of ire1α and xbp1s were cloned and comprised 3793 bp and 1789 bp with an open reading frame of 3279 bp and 1170 bp, encoding 1093 and 390 amino acids, respectively. IRE1α protein possessed a protein kinase and endoribonuclease domain and XBP1s protein possessed a basic-leucine zipper domain. The IRE1α protein and XBP1s protein located to the ER membrane and nucleus respectively. The ire1α and xbp1s were widely transcribed in various tissues with the higher level in intestine, liver, adipose and head kidney. The ER stress-inducing agent tunicamycin (Tm) and PA treatment significantly activated the IRE1α-XBP1s signaling pathway and increased the pro-inflammatory genes expression including tumor necrosis factor α (tnfα), interleukin 6 (il-6) and interleukin 1β (il-1β) (P < 0.05). When KIRA6, the IRE1α kinase inhibitor, was used to block the IRE1α-XBP1s signaling pathway, the Tm and PA-induced pro-inflammatory genes expression was significantly suppressed (P < 0.05). These data indicated that the IRE1α-XBP1s signaling pathway was involved in the PA-induced inflammatory response in large yellow croaker.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.