Abstract

Genomic sequence of the ATP-dependent phosphoeno/pyruvate carboxykinase (CsPCK) gene has been determined first from cucumber. Several putative clones were isolated in three rounds of genomic library screening with designated cDNA probes. These clones were analyzed via restriction digests, Southern hybridization, and nucleotide sequencing to ascertain the structure of theCsPCK gene. Analysis of a selected positive clone (λcscpk-4A) demonstrated that this gene consists of 13 exons and 12 introns, spanning 9 kb in the cucumber genome. Exon 1 contains only 23 nucleotides of the 5′-noncoding region of cucumberPCK cDNA, whereas Exon 2 comprises 12 nucleotides of the S′-noncoding region with an N-terminal PEPCK coding sequence. All the exon-intron junction sequences agree with the GT/AG consensus, except for the 5 donor site of Intron 7, where GC replaces the GT consensus. As with rice (Oryza sativa), cucumber contains only one copy of theCsPCK gene in its haploid genome. The overall number of exons and the structure of this gene are similar to those for bothArabidopsis Chromosome 4 (Atg4)PCK and the rice PCX genes, which contain 13 and 12 exons, respectively. Two additionalArabidopsis PCK genes can be found in the fifth chromosome (Atg5), which contains 9 exons and 8 introns (with 628 and 670 amino acids, respectively) of the PEPCK peptide. TheCsPCK gene promoter has conserved plant-specific as-acting elements within 2 kb of the 5’ flanking region. Several common cis-acting elements of the isocitrate lyase (icl) and malate synthase(ms) gene promoters, identified in theCsPCK gene, are responsible for the sugar response during plant development, especially at germination. These conserved elements are discussed here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call