Abstract

Starch phosphorylation is an important biochemical aspect of plant starch metabolism as it influences the overall structure of the starch granule, and a prerequisite for its degradation. There is a growing interest on the isolation and characterization of α-glucan/glucan-like, water dikinases (GWDs) from plants, particularly agriculturally important crops, because GWD is known to catalyze starch phosphorylation both in leaves and different plant storage organs. In the present study, a 4,789-bp full-length cDNA encoding a GWD isoform was isolated from a commercially important Indian potato cultivar, Kufri Chipsona-1 by RT-PCR approach using tuber RNA. The predicted protein consisted of 1,463 amino acids having N-terminal 77-amino acid transit peptide, and 1,386-amino acid mature protein shorter by one amino acid as compared to the other mature GWDs from potato and tomato. The mature GWD showed 98 % sequence identity with the GWD isolated earlier from the potato cv. Desiree. Variations were found at 25 locations representing mostly non-conservative substitutions. The GWD represents a distinct isoform from potato, as revealed by sequence and phylogenetic analyses. Amino acid composition, segment-wise hydrophobic characters, predicted secondary structures were also analyzed and documented in this report. Broadly, the level of GWD expression as analyzed by semi-quantitative RT-PCR approach was found to be nearly uniform both in the mature tubers and leaves from most of the potato cultivars. By immunodetection technique, a band corresponding to ~155 kDa protein was detected only in the tuber protein extracts. The tuber starch-bound phosphorus content data showed minor variations between the potato cultivars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call