Abstract

The genes folliculogenesis specific basic helix-loop-helix (facor in the germline alpha, Figla) and doublesex and mab-3 related transcription factor 1 (Dmrt1) are female- and male-specific genes that play key roles in sex differentiation. To obtain a better understanding of the molecular mechanisms underlying female-to-male sex change, we cloned the cDNAs of these genes from an ovary and a testis of the protogynus wrasse, Halichoeres poecilopterus. This fish has two isoforms of Dmrt1, Dmrt1a and Dmrt1b, caused by an alternative splicing. The Dmrt1b has an insertion of three nucleotides (CAG) in the open reading frame. Figla and Dmrt1 displayed gonadal-specific expression and abundant in the ovaries and in the testes, respectively. In particular, levels of Figla expression in the ovaries were higher in the spawning season than in the non-spawning season. Once sex change began, Figla mRNA decreased and Dmrt1 mRNA increased with progression of oocyte degeneration and spermatogenesis. These expression levels were maintained until the completion of the sex change. Low Figla and high Dmrt1 were also observed in testes of primary males, which functioned as a gonochoristic male throughout its life span in this wrasse. The results of this study suggest that these genes may regulate the gonadal transition from ovary to testis by the same mechanism as that of formation and maintenance of the primary testis in H. poecilopterus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.