Abstract

Lepidoptera such as the domestic silkworm (Bombyx mori) produce proteins modified with unsialylated, mannose-rich moieties known as 'high mannose-type'N-glycans. However, we observed that, under intrinsic acetylglucosaminidase (GlcNAcase)-inhibited conditions, moth cells tend to synthesize different types of glycoform with sialic acid modification. To identify molecules essential to assemble Lepidoptera-specific N-glycans, we performed BLAST analysis on the silkworm genetic database and isolated the entire coding sequence of novel Bombyx GlcNAcase, BmGlcNAcase 2. This enzyme showed weak homology to currently known, lysosome-associated eukaryotic hexosaminidases, but it revealed remarkable similarity with recently reported glycosyl hydrolases of Spodoptera and Bombyx. Interestingly, BmGlcNAcase 2 was found to be expressed in embryos and in certain tissues of molting larvae (i.e. ovary, fat bodies, mid-intestine, skin), but not in pupae, suggesting its unique function in the carbohydrate metabolism of juvenile silkworm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.