Abstract

Insulin-like growth factor-binding protein-2 (IGFBP-2) plays a key role in regulating growth and development by its affinity with insulin-like growth factors (IGFs). In this study, we cloned the coding sequence (CDS) of IGFBP-2a from the black porgy (Acanthopagrus schlegelii) muscle and identified that the full-length CDS of IGFBP-2a was 882bp. Real-time quantitative PCR revealed that IGFBP-2a was most abundant in the liver of the black porgy and backcross breed (F1♀×black porgy♂) but remained lower in each tested tissue in self-cross breed (F1♀×F1♂). In addition, the IGFBP-2a expression in the liver of three breeds showed a negative correlation with their growth rates, indicating that the IGFBP-2a played a growth-inhibiting role in the three breeds. We further identified 810bp IGFBP-2b gene from the draft genome of black porgy. Finally, we examined the IGFBP-2a and IGFBP-2b genes by scanning the genomes of the species of Perciformes and found the IGFBP-2 gene duplication took place earlier than the divergence of perciform species. Interestingly, six positively selected sites were detected in both Perciformes IGFBP-2 genes, although both genes were identified to be under purifying selection. Specially, these positively selected sites were located in the functional domains, suggesting these sites played key roles in the growth of Perciformes. Our study partially explains the molecular basis for the prepotency in black porgy hybrids, which will provide guidance for their cultivation in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call