Abstract

Cinnamyl alcohol dehydrogenase (CAD) catalyses the reduction of hydroxycinnamyl aldehydes (sinapyl, paracoumaryl, coniferyl aldehydes) to the corresponding alcohols which are the direct monomeric precursors of lignins. Recently, we have purified from Eucalyptus gunnii two isoforms of CAD (CAD1 and CAD2), distinct in their biochemical and functional properties. In this paper, we report the cloning of a CAD cDNA (pEuCAD2) isolated by screening a lambda gt11 library generated from cell suspension culture of Eucalyptus gunnii, using a tobacco CAD cDNA as a probe. This full-length clone (1392 bp) encodes a protein of 356 amino acids which corresponds to the subunit molecular weight of the CAD2 isoform. Sequence analysis revealed that CAD2 is very well conserved among species (78% homology with CAD from tobacco, a herbaceous angiosperm, and 81% with the partial sequence from a gymnosperm, loblolly pine). The identity of this clone was unambiguously demonstrated (1) by comparison with peptide sequence data from purified CAD2 and (2) by functional expression of the recombinant enzyme in Escherichia coli. Recombinant CAD showed the same properties as the natural isoform CAD2, in terms of electrophoretic mobility, polypeptide structure, substrate specificity and antigenicity. The CAD2 transcript is equally abundant in stems and leaves and at the limit of detection in roots. At the tissue level the CAD2 gene is highly expressed in xylem and virtually undetectable in phloem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.