Abstract
We have cloned a complementary DNA encoding the putative Xenopus insulin-like growth factor-1 (xIGF-1) receptor. Injection of messenger RNA derived from the cloned complementary DNA into Xenopus oocytes resulted in the expression and correct processing of the receptor's alpha- and beta-subunits. Using antibodies generated against protein expressed against the cloned sequence, we demonstrated that the endogenous xIGF-1 receptor in Xenopus oocytes was activated by nanomolar concentrations of mammalian IGF-1 and by insulin approximately 100-fold higher in concentration. This receptor activation profile correlated with hormone-induced Xenopus oocyte maturation. Furthermore, injection of a neutralizing antiinsulin receptor antibody into Xenopus oocytes inhibited hormone-induced xIGF-1 receptor activation. These results provide molecular and biochemical evidence supporting a role for xIGF-1 receptor in mediating insulin/IGF-1-induced Xenopus oocyte maturation. We also report here that embryonic transcription of xIGF-1 receptor is activated during the formation of the central nervous system in early Xenopus embryos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.