Abstract

Two novel genes encoding the serine proteinases, subtilisin (AaSP1) and trypsin (AaSP2), from Aphanomyces astaci were identified. Based on the amino acidconsensus sequences around the catalytic triad of these serine proteinases, degenerated oligonucleotides were designed for isolation of serine proteinase genes from a genomic DNA library. The AaSP1 gene encodes a full-length protein of 515 amino acids as a large precursor of 56 kDa. After cleavage of a predicted leader sequence of 18 residues and a prepeptide of 133 amino acids, the mature enzyme of 364 amino acids is generated with a calculated molecular mass of 39 kDa and a pI of 6.0. The primary sequence of AaSP1 showed similarity to both bacterial subtilisin and fungal subtilisin-like serine proteinases. Southern blot analysis of AaSP1 revealed the presence of at least two subtilisin genes in the A. astaci genome. Northern blot analysis indicated that the size of AaSP1 transcript was 1.6 kb. The AaSP2 gene encodes a prepropeptide of 276 amino acids with a molecular mass of 29 kDa. A mature protein of 237 amino acids is probably generated after cleavage of a 17-residue signal peptide and a 21-amino-acid prepeptide with a predicted molecular mass of 25 kDa and a pI of 6.0. The primary sequence of AaSP2 showed similarity to trypsin enzymes from various organisms. Southern blot analysis revealed the presence of multiple trypsin genes in the A. astaci genome. Northern blot analysis indicated that the size of AaSP2 transcript was 1.0 kb. The regulation of AaSP2 transcription was not controlled by nitrogen catabolic repression. However, the expression of AaSP2 was found to be specifically induced by crayfish plasma, implying a role in pathogenesis toward the crayfish host.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call