Abstract

Inherited biallelic mutations of the ATM (ataxia-telangiectasia mutated) gene in humans cause ataxia-telangiectasia, a rare autosomal recessive disorder associated with progressive neuro-degeneration, cancer predisposition, immunodeficiency, and hypersensitivity to ionizing radiation. The ATM gene is highly conserved across a wide range of species. In an attempt to establish a zebrafish (Danio rerio) model of ataxia-telangiectasia, we cloned the coding sequence of the catalytic domain of the zebrafish homologue of ATM and found it to contain an open reading frame encoding 907 amino acids at the carboxyl terminus of the zebrafish ATM (zATM). The catalytic domain of zATM shares 67% and 66% homology with human ATM (hATM) and mouse ATM (mATM), respectively. The full-length mRNA encoding zATM is found to be approximately 11 kb by Northern hybridization, and the expression of zATM is observed in different adult and embryonic tissues. Overexpression of a kinase-inactive zATM domain in human cells has a dominant-negative effect against hATM function. Expression of the altered zATM in ZF4 cells leads to an A-T-like phenotype in response to ionizing radiation. These results taken together indicate that zATM is the homologue of hATM. Furthermore, using the kinase-inactive form of zATM should allow manipulation of zATM function in fish cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.