Abstract

We have previously cloned chondroitin 6-sulfotransferase (C6ST) cDNA from chick embryo chondrocytes. C6ST catalyzes sulfation of chondroitin, keratan sulfate, and sialyl N-acetyllactosamine oligosaccharides. In this study, we report the cloning and characterization of a novel sulfotransferase that catalyzes sulfation of keratan sulfate. This new sulfotransferase cDNA clone was obtained from a human fetal brain library by cross-hybridization with chick C6ST cDNA. The cDNA clone obtained contains a single open reading frame that predicts a type II transmembrane protein composed of 411 amino acid residues. When the cDNA was introduced into a eukaryotic expression vector and transfected in COS-7 cells, keratan sulfate sulfotransferase activity was overexpressed, but C6ST activity was not increased over that of the control. Structural analysis of 35S-labeled glycosaminoglycan, which was formed from keratan sulfate by the reaction with 35S-labeled 3'-phosphoadenosine 5'-phosphosulfate and the recombinant sulfotransferase, showed that keratan sulfate was sulfated at position 6 of Gal residues. On the basis of the acceptor substrate specificity, we propose keratan sulfate Gal-6-sulfotransferase (KSGal6ST) for the name of the newly cloned sulfotransferase. KSGal6ST was assigned to chromosome 11p11. 1-11.2 by fluorescence in situ hybridization. Among various human adult tissues, a 2.8-kilobase message of KSGal6ST was expressed mainly in the brain. When poly(A)+ RNAs from the chick embryo cornea and brain were probed with the human KSGal6ST cDNA in Northern hybridization, a clear band with about 2.8 kilobases was detected. These observations suggest that KSGal6ST may participate in the biosynthesis of keratan sulfate in the brain and cornea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.