Abstract

Fas-associated protein with death domain (FADD) is the key adaptor protein that transmits apoptotic signals mediated by the main death receptors. Besides being an essential instrument in cell death, FADD is also implicated in proliferation, cell cycle progression, tumor development, inflammation, innate immunity, and autophagy. In the present study, a FADD homologue (EcFADD) from the orange-spotted grouper (Epinephelus coioides) was cloned and its possible role in fish immunity was analyzed. The full length cDNA of EcFADD contains 808 base pairs (bp), including a 573 bp open reading frame that encodes a 190 amino acid protein with a predicted molecular mass of 21.81 kDa. Quantitative real-time polymerase chain reaction analysis indicated that EcFADD was distributed in all examined tissues. The expression of EcFADD in the spleen of E. coioides was differentially up-regulated when challenged with Singapore grouper iridovirus (SGIV) or polyinosine-polycytidylic acid(poly[I:C]). EcFADD was abundantly distributed in both the cytoplasm and nucleus in grouper spleen (GS) and fathead minnow (FHM) epithelial cells. Over-expression of EcFADD inhibited SGIV infection and replication and SGIV-induced apoptosis. To achieve antiviral and anti-apoptosis activities, FADD promoted the activation of interferon-stimulated response element (ISRE) and type I interferon (IFN) genes in the antiviral IFN signaling pathway and inhibited activation of apoptosis-related transcription factors p53. Our results not only characterize FADD but also reveal new immune functions and the molecular mechanisms by which FADD responds to virus infection and virus-induced apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call