Abstract

NOX proteins are growth-related cell surface proteins that catalyze both hydroquinone or NADH oxidation and protein disulfide interchange and exhibit prion-like properties. The two enzymatic activities alternate to generate a regular period length of about 24 min. Here we report the expression, cloning, and characterization of a tumor-associated NADH oxidase (tNOX). The cDNA sequence of 1830 bp is located on gene Xq25-26 with an open reading frame encoding 610 amino acids. The activities of the bacterially expressed tNOX oscillate with a period length of 22 min as is characteristic of tNOX activities in situ. The activities are inhibited completely by capsaicin, which represents a defining characteristic of tNOX activity. Functional motifs identified by site-directed mutagenesis within the C-terminal portion of the tNOX protein corresponding to the processed plasma membrane-associated form include quinone (capsaicin), copper and adenine nucleotide binding domains, and two cysteines essential for catalytic activity. Four of the six cysteine to alanine replacements retained enzymatic activity, but the period lengths of the oscillations were increased. A single protein with two alternating enzymatic activities indicative of a time-keeping function is unprecedented in the biochemical literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.