Abstract

We have isolated a rat cDNA whose expression suppresses the physiological consequences of the chromosomal disruption of CAP, the gene encoding the adenylyl cyclase-associated protein of Saccharomyces cerevisiae. Yeast CAP is a bifunctional protein: the NH2 terminus is necessary and sufficient for cellular responsiveness to activated RAS proteins, while the COOH terminus is required for normal cellular morphology and growth control. The rat MCH1 cDNA encodes a protein of 474 amino acids that is 36% identical to S. cerevisiae CAP and is capable of suppressing the loss of the COOH-terminal functions of CAP when expressed in yeast. The MCH1 protein therefore appears to be a structural and functional homolog of the yeast cyclase-associated proteins. Northern analysis of MCH1 gene expression shows it to be constitutively expressed in all cell and tissue types examined. The cloning of a rat homolog of CAP, in addition to the cloning of a human CAP homolog by Matviw et al. (Matviw, H., Yu, G., and Young, D. (1992) Mol. Cell. Biol. 12, 5033-5040), demonstrates that both cyclase-associated proteins and their functions may have evolved with mammalian cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call