Abstract

We report the isolation of a novel mouse gene which encodes a putative hyaluronan synthase. The cDNA was identified using degenerate reverse transcriptase-polymerase chain reaction. Degenerate primers were designed based upon an alignment of the amino acid sequences of Streptococcus pyogenes HasA, Xenopus laevis DG42, and Rhizobium meliloti NodC. A mouse embryo cDNA library was screened with the resultant polymerase chain reaction product, and multiple cDNA clones spanning 3 kilobase pairs (kb) were isolated. The open reading frame predicted a 63-kDa protein with several transmembrane sequences, multiple consensus phosphorylation sites, and four putative hyaluronan binding motifs. The amino acid sequence displayed 55% identity to mouse HAS, 56% identity to Xenopus DG42, and 21% identity to Streptococcus HasA. Northern analysis identified transcripts of 4.8 kb and 3.2 kb, which were expressed highly in the developing mouse embryo and at lower levels in adult mouse heart, brain, spleen, lung, and skeletal muscle. Transfection experiments demonstrated that mouse Has2 could direct hyaluronan coat biosynthesis in transfected COS cells, as evidenced by a classical particle exclusion assay. These results suggest that mammalian HA synthase activity is regulated by at least two related genes. Accordingly, we propose the name Has2 for this gene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.