Abstract
Leishmania parasites secrete a variety of proteins that are modified by phosphoglycan chains structurally similar to those of the cell surface glycolipid lipophosphoglycan. These proteins are collectively called proteophosphoglycans. We report here the cloning and sequencing of a novel Leishmania major proteophosphoglycan gene, ppg1. It encodes a large polypeptide of approximately 2300 amino acids. The N-terminal domain of approximately 70 kDa exhibits 11 imperfect amino acid repeats that show some homology to promastigote surface glycoproteins of the psa2/gp46 complex. The large central domain apparently consists exclusively of approximately 100 repetitive peptides of the sequence APSASSSSA(P/S)SSSSS(+/-S). Gene fusion experiments demonstrate that these peptide repeats are the targets of phosphoglycosylation in Leishmania and that they form extended filamentous structures reminiscent of mammalian mucins. The C-terminal domain contains a functional glycosylphosphatidylinositol anchor addition signal sequence, which confers cell surface localization to a normally secreted Leishmania acid phosphatase, when fused to its C terminus. Antibody binding studies show that the ppg1 gene product is phosphoglycosylated by phosphoglycan repeats and cap oligosaccharides. In contrast to previously characterized proteophosphoglycans, the ppg1 gene product is predominantly membrane-associated and it is expressed on the promastigote cell surface. Therefore this membrane-bound proteophosphoglycan may be important for direct host-parasite interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.