Abstract
Agar, a major polysaccharide of red algal cells, is degraded by β-agarases into neoagarobiose, which is further hydrolyzed into the monomers, D-galactose and 3,6-anhydro-L-galactose, by 1,3-α-3,6-anhydro-L-galactosidases including α-1,3-L-neoagarooligasaccharide hydrolase (α-NAOSH). A novel cold-adapted alkaline α-NAOSH, Ahg558, consisting of 359 amino acids (40.8kDa) was identified from Gayadomonas joobiniege G7. It was annotated as a glycosyl hydrolase family 43 based on genomic sequence analysis, showing 84% and 74% identities with the characterized α-NAOSHs from Agarivorans gilvus WH0801 and Saccharophagus degradans 2-40, respectively. The recombinant Ahg558 (rAhg558) purified from Escherichia coli formed dimers and cleaved α-1,3 glycosidic bonds at the non-reducing ends of the neoagarobiose, neoagarotetraose, and neoagarohexaose, which was confirmed by thin-layer chromatography and mass spectrometry. The optimum pH and temperature for rAhg558 activity were 9.0 and 30°C, respectively. Unusually, it retained over 93% activity in a broad range of temperatures between 0 and 40°C and over 73% in a broad range of pH between pH 6.0 and pH 9.0, indicating it is a unique cold-adapted alkaline exo-acting α-NAOSH. Its enzymatic activity was dependent on Mn2+ ions. Km and Vmax values toward neoagarobiose were 2.6mg/mL (8.01mM) and 133.33U/mg, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.