Abstract
As an essential mediator in the Gonadotropin-releasing hormone (GnRH) signaling pathway, GnRH receptor (GnRHR) coupled to GnRH, plays an important role in activating the downstream pathway after stimulating a series of cascades to regulate reproduction. To detect the existence of GnRHR and potential GnRH signaling pathway, we cloned and characterized GnRHR in the Chinese mitten crab, Eriocheir sinensis (named EsGnRHR). The full-length EsGnRHR cDNA is 2038 bp in length, including an open reading frame (ORF) of 1566 bp, a 57 bp 5′-untranslated region (5′-UTR) and a 415 bp 3′-UTR. Prediction of transmembrane domains in protein sequence revealed that the EsGnRHR protein contained seven hydrophobic transmembrane regions (TMs). Reverse transcription PCR revealed that EsGnRHR was mainly expressed in the thoracic nerve group and ovary, and weakly distributed in the testis and brain. In situ hybridization further demonstrated that EsGnRHR mRNA was localized at the protocerebrum and deutocerebrum. In the ovary and testis, the hybridization signal was dominantly at the earlier developmental stages. The signal was mainly localized in the cytoplasm cell in the ovary, and in the epithelium cell in the testis. During the different stages of gonadal development, EsGnRHR displayed increasing trends in both female and male when analyzed by quantitative real-time PCR, suggesting that EsGnRHR was involved in controlling gonadal development. Our study provides important information for further research on the molecular mechanisms underlying crab development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.