Abstract

Using gene expression data to classify tumor types is a very promising tool in cancer diagnosis. Previous works show several pairs of tumor types can be successfully distinguished by their gene expression patterns (Golub et al. 1999, Ben-Dor et al. 2000, Alizadeh et al. 2000). However, the simultaneous classification across a heterogeneous set of tumor types has not been well studied yet. We obtained 190 samples from 14 tumor classes and generated a combined expression dataset containing 16063 genes for each of those samples. We performed multi-class classification by combining the outputs of binary classifiers. Three binary classifiers (k-nearest neighbors, weighted voting, and support vector machines) were applied in conjunction with three combination scenarios (one-vs-all, all-pairs, hierarchical partitioning). We achieved the best cross validation error rate of 18.75% and the best test error rate of 21.74% by using the one-vs-all support vector machine algorithm. The results demonstrate the feasibility of performing clinically useful classification from samples of multiple tumor types.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.