Abstract
Signaling motifs (nuclear transcriptional receptors, kinase/phosphatase cascades, G-coupled protein receptors, etc.) have composite dose-response behaviors in relation to concentrations of protein receptors and endogenous signaling molecules. "Molecular circuits" include the biological components and their interactions that comprise the workings of these signaling motifs. Many of these molecular circuits have nonlinear dose-response behaviors for endogenous ligands and for exogenous toxicants, acting as switches with "all-or-none" responses over a narrow range of concentration. In turn, these biological switches regulate large-scale cellular processes, e.g., commitment to cell division, cell differentiation, and phenotypic alterations. Biologically based dose-response (BBDR) models accounting for these biological switches would improve risk assessment for many nonlinear processes in toxicology. These BBDR models must account for normal control of the signaling motifs and for perturbations by toxic compounds. We describe several of these biological switches, current tools available for constructing BBDR models of these processes, and the potential value of these models in risk assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.