Abstract

BackgroundFlowering time greatly influences the adaptation of wheat cultivars to diverse environmental conditions and is mainly controlled by vernalization and photoperiod genes. In wheat cultivars from the Yellow and Huai Valleys, which represent 60%-70% of the total wheat production in China, the large-scale genotyping of wheat germplasms has not yet been performed in terms of vernalization and photoperiod response alleles, limiting the use of Chinese wheat germplasms to a certain extent.ResultsIn this study, 173 winter wheat cultivars and 51 spring wheat cultivars from China were used to identify allelic variations of vernalization and photoperiod genes as well as copy number variations of Ppd-B1 and Vrn-A1. Two new co-dominant markers were developed in order to more precisely examine Vrn-A1b, Vrn-B1a, and Vrn-B1b. Two novel alleles at the Vrn-B3 locus were discovered and were designated Vrn-B3b and Vrn-B3c. Vrn-B3b had an 890-bp insertion in the promoter region of the recessive vrn-B3 allele, and Vrn-B3c allele had 2 deletions (a 20-bp deletion and a 4-bp deletion) in the promoter region of the dominant Vrn-B3a allele. Cultivar Hemai 26 lacked the Vrn-A1 gene. RT-PCR indicated that the 890-bp insertion in the Vrn-B3b allele significantly reduced the transcription of the Vrn-B3 gene. Cultivars Chadianhong with the Vrn-B3b allele and Hemai 26 with a Vrn-A1-null allele possessed relatively later heading and flowering times compared to those of Yanzhan 4110, which harbored recessive vrn-B3 and vrn-A1 alleles. Through identification of photoperiod genes, 2 new polymorphism combinations were found in 6 winter wheat cultivars and were designated Hapl-VII and Hapl-VIII, respectively. Distribution of the vernalization and photoperiod genes indicated that all recessive alleles at the 4 vernalization response loci, truncated “Chinese Spring” Ppd-B1 allele at Ppd-B1 locus and Hapl-I at the Ppd-D1 locus were predominant in Chinese winter wheat cultivars.ConclusionThis study illustrated the distribution of vernalization and photoperiod genes and identified 2 new Vrn-B3 alleles, 1 Vrn-A1-null allele, and two new Ppd-D1 polymorphism combinations, using developed functional markers. Results of this study have the potential to provide useful information for screening relatively superior wheat cultivars for better adaptability and maturity.

Highlights

  • Flowering time greatly influences the adaptation of wheat cultivars to diverse environmental conditions and is mainly controlled by vernalization and photoperiod genes

  • Discovery of 2 novel dominant vernalization response (Vrn)-B3 alleles in Chinese winter wheat Screening of the 173 Chinese winter wheat cultivars by dominant Polymerase chain reaction (PCR) primer sets Vrn-P12F/R and Vrn-P13F/R (Table 1) indicated that 170 cultivars with the expected 1140-bp fragment size belonged to the recessive vrn-B3 allele

  • The approximately 2000bp fragment was ligated into the pGEM-T Easy vector, and sequencing results of plasmids containing the targeted fragment indicated that an exact 890-bp fragment was inserted into the 5′ untranslated region (UTR) at −429 bp

Read more

Summary

Introduction

Flowering time greatly influences the adaptation of wheat cultivars to diverse environmental conditions and is mainly controlled by vernalization and photoperiod genes. Vernalization and photoperiod responses, which determine flowering and heading times, have a significant influence on the adaptability of wheat plants to a set of environmental conditions. Major vernalization response (Vrn) loci, which determine flowering and maturity times, have been mapped to the middle of the long arms of chromosomes 5 [2,3,4,5]. Vrn-1 genes, directly influencing flowering and maturity times, are located on chromosomes 5AL, 5BL and 5DL [6,7] and were the first vernalization genes cloned in polyploid wheat by map-based cloning techniques [8]. The growth habits and vernalization requirements of cereal plants are mainly determined by 3 genes Vrn-1, Vrn-2 and Vrn-3

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.