Abstract

BackgroundPharmacological investigations position withanolides as important bioactive molecules demanding their enhanced production. Therefore, one of the pivotal aims has been to gain knowledge about complete biosynthesis of withanolides in terms of enzymatic and regulatory genes of the pathway. However, the pathway remains elusive at the molecular level. P450s monooxygenases play a crucial role in secondary metabolism and predominantly help in functionalizing molecule core structures including withanolides.ResultsIn an endeavor towards identification and characterization of different P450s, we here describe molecular cloning, characterization and expression analysis of two A-type P450s, WsCYP98A and WsCYP76A from Withania somnifera. Full length cDNAs of WsCYP98A and WsCYP76A have open reading frames of 1536 and 1545 bp encoding 511 (58.0 kDa) and 515 (58.7 kDa) amino acid residues, respectively. Entire coding sequences of WsCYP98A and WsCYP76A cDNAs were expressed in Escherichia coli BL21 (DE3) using pGEX4T-2 expression vector. Quantitative real-time PCR analysis indicated that both genes express widely in leaves, stalks, roots, flowers and berries with higher expression levels of WsCYP98A in stalks while WsCYP76A transcript levels were more obvious in roots. Further, transcript profiling after methyl jasmonate, salicylic acid, and gibberellic acid elicitations displayed differential transcriptional regulation of WsCYP98A and WsCYP76A. Copious transcript levels of both P450s correlated positively with the higher production of withanolides.ConclusionsTwo A-types P450 WsCYP98A and WsCYP76A were isolated, sequenced and heterologously expressed in E. coli. Both P450s are spatially regulated at transcript level showing differential tissue specificity. Exogenous elicitors acted as both positive and negative regulators of mRNA transcripts. Methyl jasmonate and salicylic acid resulted in copious expression of WsCYP98A and WsCYP76A. Enhanced mRNA levels also corroborated well with the increased accumulation of withanolides in response to elicitations. The empirical findings suggest that elicitors possibly incite defence or stress responses of the plant by triggering higher accumulation of withanolides.Electronic supplementary materialThe online version of this article (doi:10.1186/s12896-014-0089-5) contains supplementary material, which is available to authorized users.

Highlights

  • Pharmacological investigations position withanolides as important bioactive molecules demanding their enhanced production

  • We have reported that exogenous application of methyl jasmonate (MeJA) and salicylic acid (SA) increases withanolide content due to the presence of stress regulatory elements within the upstream promoter regions of their genes [20,23]

  • Full length cDNAs of WsCYP98A and WsCYP76A genes were obtained from the leaf tissue of WS-3 rich chemo-variant by degenerate PCR and Rapid amplification of cDNA ends (RACE) methods (WsCYP98A: HM585369 and WsCYP76A: KC008573)

Read more

Summary

Introduction

Pharmacological investigations position withanolides as important bioactive molecules demanding their enhanced production. P450s monooxygenases play a crucial role in secondary metabolism and predominantly help in functionalizing molecule core structures including withanolides. Cytochrome P450s form a huge superfamily of hemecontaining monooxygenases present in all domains of life. These are pivotal in detoxification of xenobiotics, drug metabolism, assimilation of carbon sources and formation of secondary metabolites. P450s are endoplasmic reticulum (ER) localised, requiring auxiliary reductases for the activation of molecular oxygen for different reactions. These reductases transfer two electrons in a single step from cofactor NAD(P)H to heme centre of P450s [6]. Involvement of P450s in diverse physiological processes in vivo, leads to biosynthesis and catabolism of huge array of complex metabolites like lignin, pigments, defence compounds, fatty acids, hormones and signaling molecules [7,8,9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call