Abstract

Transient receptor potential vanilloid 4 (TRPV4) is an osmosensory cation channel that respond to an increase in cell volume and participates in various physiological functions. Among organisms in aquatic environments, euryhaline teleost is are suitable experimental models to study ion channel proteins related to physiological functions involving osmosensing. Among the studies of various regulatory molecules that mediate osmotic regulation in fish, however, information is lacking, particularly on the TRP family. This study investigated the structural characteristics of theTRPV4 gene of chum salmon (Oncorhynchus keta) and their responses to changes in salinity and temperature. Interestingly, TRPV4 generates transcript variants of the intron-retention form through alternative splicing, resulting in a frameshift leading to the generation of transcripts of different structures. In particular, TRPV4 x1 and TRPV x2 mRNAs were predominant in the gill and skin including at the lateral line. The expression levels of chum salmon TRPV4 x1 were significantly increased with increase in salinity and temperature, whereas TRPV4 x2 mainly responded to temperature decrease. Overall, these results demonstrate for the first time the effects of salinity and temperature on the expression of two salmonid TRPV4 transcript variants, suggesting their contribution to the regulation of hydromineral balance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call