Abstract
Eukaryotic ribonucleotide reductase (RNR), the enzyme involved in the synthesis of the deoxyribonucleotides, consists of two R1 and R2 subunits whose activities and gene expression are differentially regulated during the cell cycle and are preferentially induced at the G1/S transition. We have isolated three cDNA clones from a tobacco S phase library, two encoding the large R1 subunit, the first cloned in plants, and one encoding the small R2 subunit. From Southern blot hybridization we deduce that RNR2 is encoded by a single-copy gene whereas RNR1 is encoded by a small multigene family. The level of RNR mRNA is cell-cycle regulated showing a maximum in S phase. In mid-S phase, RNR2 transcripts show a higher maximum level than RNR1 transcripts. Analysis of the effects of various cell cycle inhibitors added to freshly subcultured stationary phase cells leads to the conclusion that RNR gene induction at the entry of the cells into the cell cycle takes place in late G1-early S phase. Addition of DNA synthesis-blocking agents to cycling cells synchronized in mid-S phase resulted in an enhancement of RNR transcript level, thus suggesting that RNR gene expression may be linked to the DNA synthesis rate by a feedback-like regulatory mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.