Abstract
Stenotrophomonas maltophilia is a motile, opportunistic pathogen. The flagellum, which is involved in swimming, swarming, adhesion, and biofilm formation, is considered a virulence factor for motile pathogens. Three flagellin genes, fliC1, fliC2, and fliC3, were identified from the sequenced S. maltophilia genome. FliC1, fliC2, and fliC3 formed an operon, and their encoding proteins shared 67–82% identity. Members of the fliC1C2C3 operon were deleted individually or in combination to generate single mutants, double mutants, and a triple mutant. The contributions of the three flagellins to swimming, swarming, flagellum morphology, adhesion, and biofilm formation were assessed. The single mutants generally had a compromise in swimming and no significant defects in swarming, adhesion on biotic surfaces, and biofilm formation on abiotic surfaces. The double mutants displayed obvious defects in swimming and adhesion on abiotic and biotic surfaces. The flagellin-null mutant lost swimming ability and was compromised in adhesion and biofilm formation. All tested mutants demonstrated substantial but different flagellar morphologies, supporting that flagellin composition affects filament morphology. Bacterial swimming motility was significantly compromised under an oxidative stress condition, irrespective of flagellin composition. Collectively, the utilization of these three flagellins for filament assembly equips S. maltophilia with flagella adapted to provide better ability in swimming, adhesion, and biofilm formation for its pathogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.