Abstract

BackgroundXishuangbanna, a border area of China, Burma and Laos, had its first major DENV-1 outbreak in 2017. This study aims to explore the genetic characterization, potential source and evolution of the viruses in outbreak. MethodsThe structural protein C/prM/E genes of viruses isolated from local residents or Burmese travelers were sequenced followed by mutation, phylogenetic, homologous recombination, molecular clock and demographic reconstruction analysis. ResultsPhylogenetic analysis revealed that all of the strains were classified as three cluster of DENV-1. Cluster 1, 2 and 3 were most similar to China Guangzhou 2011, China Hubei 2014 and Laos 2008 strain, respectively. Among 236 base mutations, 31 caused nonsynonymous mutations when compared with the DENV-1SS. No homologous recombination signal was discovered. The structural protein of these strains had similar three-dimensional structure. Only site 434 showed differences among five predicted protein binding sites. Molecular clock phylogenetic and demographic reconstruction analysis showed that DENV-1 became highly diversified in 1972 followed by a slightly decreased period until 2017. ConclusionsDengue isolated strains show diversification between Burma and China. Amino acid substitution (I440T) may lead to weakened virulence of the epidemic strains. DENV-1 became highly diversified in 1972 followed by a slightly decreased period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.