Abstract

Within the adult heart, it is convention to distinguish the conduction system and working (atrial and ventricular) myocardium. The adult conduction system (CS) comprises the sinoatrial (SAN), and atrioventricular (AVN) nodes, the atrioventricular bundle (AVB), the bundle branches and the peripheral Purkinje fibers, each of which display distinct functional properties and distinct profile of gene expression. Characterization of the mouse cardiac conduction system during development is rudimentary at present, even though genetically-modified mice are an increasing source of information regarding cardiac function and embryonic heart development. We have performed a detailed study of the pattern of expression of myosin heavy chain (MHC), myosin light chain (MLC), troponin I (TnI) isoforms, connexin 43 (Cx43), desmin and alpha-smooth muscle actin (alpha-SMA), in the ventricular conduction system of normal and congenitally malformed mouse hearts (iv background) from embryonic day 14.5 to 19.5. The AVN is characterized by co-expression of MHC and MLC isoforms and no detectable expression of Cx43, desmin or alpha-SMA. The AVB expresses betaMHC and MLC2v, but no alphaMHC, MLC2a, Cx43, desmin or alpha-SMA. The right and left bundle branches display enhanced expression of desmin and alpha-SMA but no Cx43. The normal expression profile is maintained in congenitally malformed hearts such as double-outlet right ventricle and common atrioventricular canal. Three-dimensional reconstruction of the conduction system shows normal arrangement of the bundle branches in congenitally malformed hearts, but abnormal location and/or extension of the AVN. Molecular characterization allows to follow the development of the CS in both, normal and malformed mouse hearts. Normal phenotypic expression of the CS is independent of heart situs but shows minor modifications in the presence of heart malformations. It is concluded that the AVN derives from the atrioventricular canal myocardium, the bundle of His from the ventricular myocardium, and the bundle branches from the ventricular trabeculations. Our results do not provide evidence to support an extra-cardiac origin of the ventricular CS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call