Abstract

Heat stress severely affects plant growth and development causing crop loss worldwide. Classical type I DnaJ proteins (also called as J-proteins, J-domain proteins or HSP40 proteins) function as molecular co-chaperones for the HSP70 proteins. In this study, we have cloned and characterized a novel gene GmDjp1 (G lycine m ax DnaJ protein 1) encoding a type III J-protein of which function has not been identified in plant. Deduced amino acid sequences of GmDjp1 show the highest homology with a J-protein from Medicago truncatula legume plant (83 %) and with Arabidopsis thaliana type III J-class proteins, atDjC53 (77 %) and atDjC32 (50 %). DNA blot analysis revealed that GmDjp1 exists as a 2-copy gene in soybean genome. GmDjp1 mRNA was induced by a broad spectrum of abiotic stresses, including wounding, heat-shock, dehydration, cold or high-salinity stress, suggesting its role in the signaling events in the abiotic stress-related defense response. Subcellular localization studies demonstrated that the GmDjp1-GFP fusion protein was localized in the nucleus. Differential RNA expression of GmDjp1 by heat-shock stress inspired us to test heat-shock tolerance of GmDjp1in E. coli. Heterologous expression of GmDjp1 conferred tolerance to high temperature stress in E. coli. This report provides strong evidence that GmDjp1 may play a critical role during heat-shock stress in cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call