Abstract

Objective To investigate the feasibility and to optimize the parameters of nonlinear blending technique in dual-energy CT on solitary pulmonary nodules (SPN). Methods The simulated enhanced SPN were used the mixture of nonionic iodinated contrast agent (Iopromide 370mgI/100 ml) and normal saline and then randomly placed inside an anthropomorphic chest phantom. The phantom was examined on SOMATOM definition flash with dual mode (80/140 kV) and single energy mode (120 kV) (the same CTDIvol). Nonlinear blending images and linear blending images with a weighting factor of 0.3 were generated and the image qualities were analyzed. Results For different simulated density SPN, when 0 HU was chosen as the Blending Center (BC) and 0 to 30 HU were chosen as the Blending width (BW), the nonlinear blending images yielded a higher contrast-to-noise (CNR). There were significant differences in the image noise and signal-to-noise (SNR) of different simulated density SPN at non-linear blending images, linear blending images and 120 kV images (p < .05); But the differences of CNR between the three groups were not statistically significant (p > .05). The SNR of different simulated density SPN at non-linear blending images was significantly increased compared with it at linear blending images and 120 kV images (p < .05); And the image noise at non-linear blending was lower than it at linear blending images (p < .05). Conclusion Nonlinear blending technique in dual-energy CT can increase the SNR of enhanced SPN, and it is helpful in diagnosis of SPN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call