Abstract

Somatic embryogenesis (SE) in plants can be used as a model for studying genes engaged in the embryogenic transition of somatic cells. The CsSCARECROW (CsSCR) gene was previously identified among a panel of genes upregulated after the induction of SE in cucumber (Cucumis sativus). The putative CsSCR protein contains conserved GRAS family domains and is extremely similar to AtSCR from Arabidopsis thaliana. SCR proteins are transcription factors involved in root radial patterning and are required for main- tenance of the quiescent centre and differentiation of the endodermis. In comparison with other GRAS proteins from cucumber, phylogenetic analyses showed that CsSCR belongs to the SCR cluster. Increased CsSCR transcript accumulation was detected in somatic embryos and roots. Southern blot analysis and screening of the draft version of the cucumber genome confirmed the lack of close homologues in this spe- cies. CsSCR transcripts were localized by in situ hybridization in undifferentiated cells in the globular and heart stages of somatic embryogenesis, and in the endodermis of torpedo and cotyledonary stage somatic embryos, and developing primary and lateral roots. This localization was supported by the pattern of reporter gene activity driven by the CsSCR promoter in transgenic cucumber organs. These results suggest that CsSCR is likely to act in tissue radial organization during somatic embryogenesis and root development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.