Abstract
This study evaluated antimicrobial resistance and virulence factors in Salmonella enterica isolated from a turkey flock in which the birds were raised in an environment where antimicrobials were not administered to the birds, either through feed or water. Salmonella was isolated from turkeys and various environmental samples in the facility using conventional microbiological procedures. Isolates were serotyped and analyzed phenotypically by antimicrobial resistance profiling and genotypically by pulsed-field gel electrophoresis (PFGE) fingerprinting, integron analysis, plasmid profiling, replicon-based incompatibility (Inc) group typing, and virulence gene profiling. Ninety-five S. enterica isolates were isolated from cecal contents (n = 29), feed (n = 22), leftover feed (n = 13), litter (n = 12), drinkers (n = 10), environment (n = 8), and an insect. The following serotypes were identified: Montevideo (24%), Anatum (22%), Agona (17%), Kentucky and Worthington (12%), Senftenberg (11%), and rough phenotypes (3%). The majority of isolates (61/95; 64%) were susceptible to 12 antimicrobials tested; however, despite the absence of antimicrobials in the facility, approximately 36% of the isolates were resistant to two to five antimicrobials. Class 1 integrons were detected in 8% of the isolates. The integron sequence analysis revealed dihydrofolate reductase (dhfr) and aminoglycoside adenylyl transferase (aadA2) genes, which encode trimethoprim and streptomycin resistance, respectively. Furthermore, 71% of the isolates had at least one plasmid. There were five plasmid replicon types identified among the isolates, including IncI1, IncHI2, IncFIIA, IncB/O, and IncP, with variable prevalence among the serotypes. All 95 isolates tested polymerase chain reaction-positive for 19 virulence genes and negative for virD4 and virB4. The virulence gene profiles were similar within the isolates from the same serotype. Within particular serotypes, PFGE patterns revealed 100% similarity, even when the bacterial strains were isolated from different sources, indicating cross-colonization of sources within the turkey facility. On this antibiotic-free turkey farm, turkeys and feed appeared to be the major reservoirs of multidrug-resistant Salmonella, which harbored multiple virulence genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.