Abstract

An accurate molecular identification of plastic waste is important in increasing the efficacy of automatic plastic sorting in recycling. However, identification of real-world plastic waste, according to their resin identification code, remains challenging due to the lack of techniques that can provide high molecular selectivity. In this study, a standoff photothermal spectroscopy technique, utilizing a microcantilever, was used for acquiring mid-infrared spectra of real-world plastic waste, including those with additives, surface contaminants, and mixed plastics. Analysis of the standoff spectral data, using Convolutional Neural Network (CNN), showed 100% accuracy in selectively identifying real-world plastic waste according to their respective resin identification codes. Standoff photothermal spectroscopy, together with CNN analysis, offers a promising approach for the selective characterization of waste plastics in Material Recovery Facilities (MRFs).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call