Abstract

Root nodule bacterial strains were isolated from the little-studied legumes Eriosema chinense and Flemingia vestita (both in tribe Phaseoleae, Papilionoideae) growing in acidic soil of the sub-Himalayan region of the Indian state of Meghalaya (ME), and were identified as novel strains of Bradyrhizobium on the basis of their 16S rRNA sequences. Seven isolates selected on the basis of phenotypic characters and assessment of ARDRA and RAPD patterns were subjected to multilocus sequence analysis (MLSA) using four protein-coding housekeeping genes (glnII, recA, dnaK and gyrB). On the basis of 16S rRNA phylogeny as well as a concatenated MLSA five strains clustered in a single separate clade and two strains formed novel lineages within the genus Bradyrhizobium. The phylogenies of the symbiotic genes (nodA and nifH) were in agreement with the core gene phylogenies. It appears that genetically diverse Bradyrhizobium strains are the principal microsymbionts of these two important native legumes. The novel genotypes of Bradyrhizobium strains isolated in the present study efficiently nodulate the Phaseoloid crop species Glycine max, Vigna radiata and Vigna umbellata. These strains are genetically different from strains of Bradyrhizobium isolated earlier from a different agro-climatic region of India suggesting that the acidic nature of the soil, high precipitation and other local environmental conditions are responsible for the evolution of these newly-described Bradyrhizobium strains. In global terms, the sub-Himalayan region of India is geographically and climatically distinct and the Bradyrhizobium strains nodulating its legumes appear to be novel and potentially unique to the region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call