Abstract

The molecular characteristics of organic aerosols (OAs) in heavily polluted areas affected by coal combustion (CC) were investigated. In terms of relative abundance, the total nitrogen-containing organic compounds (NOC) accounted for about 61%–68% of all molecules detected in methanol-soluble organic carbon (MSOC) by LC − Q-TOF − MS. More than 85% of the CHON- formulas are nitro-aromatic compounds, which are generally considered to be secondary organic compounds, as evidenced by the lower degree of overlap of these substances in the atmospheric samples and CC samples. Some polycyclic aromatic compounds with 4 N and 1–2O and very low H/C and O/C ratio produced by CC are unstable and easily react to form compounds with higher degrees of saturation. Almost all of the CHON+ homologues detected in the CC samples were also found in the atmospheric samples, indicating that the large amount of CHON+ compounds produced by CC are stable during atmospheric processes. The CHN+ compounds produced by CC contain a certain amount of highly unsaturated compounds, among which 1 N-containing polycyclic aromatic hydrocarbons (1 N-PAHs) is stable in atmosphere and can serve as markers of CC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call