Abstract

BackgroundMicrobiota inhabiting midguts of mosquitoes play a key role in the host - parasite interaction and enhance vectorial capacity of viral diseases like dengue and chikungunya fevers. Mosquito midgut is considered to be an important site for host-pathogen interaction and pathogen survival is thought to be an outcome of this interaction. In the present study we examined the bacterial community in the midgut of Aedes mosquitoes in Arunanchal Pradesh, India, a subtropical zone where dengue fever is reported to be emerging.MethodLarvae and pupa of Aedes mosquitoes were collected from a biodiversity hotspot, Bhalukpong, Arunachal Pradesh, India. 16S rRNA gene sequences were used for identification of isolated bacterial population from each species of mosquitoes. We used various diversity indices to assess the diversity and richness of the bacterial isolates in both mosquito species.ResultOn the basis of 16S rRNA gene sequence analysis a total of 24 bacterial species from 13 genera were identified belonging to 10 families of four major phyla. Phylum Proteobacteria was dominant followed by Firmicutes, Bacteroidetes and Actinobacteria. The midgut bacteria belonging to the phylum Proteobacteria and Firmicutes were isolated from both Ae. albopictus and Ae. aegypti, whereas, bacteria belonging to phylum Bacteroidetes and Actinobacteria were isolated only from Ae. albopictus and Ae. aegypti respectively. Enterobacter cloacae was the dominant bacterial species in both Ae. albopictus (33.65 %) and Ae. aegypti (56.45 %). Bacillus aryabhattai (22.78 %) was the second most common bacterial species in Ae. albopictus whereas, in Ae. aegypti the second most common bacterial species was Stenotrophomonas maltophilia (7.44 %).ConclusionThe family Enterobacteriaceae of phylum Proteobacteria was dominant in both species of Aedes mosquitoes. To the best of our knowledge, this is the first attempt to study midgut microbiota from a biodiversity hotspot in Northeastern India. Some bacterial genera Enterobacter and Acinetobacter isolated in this study are known to play important roles in parasite-vector interaction. Information on midgut microflora may lead towards the development of novel, safe, and effective strategies to manipulate the vectorial capacity of mosquitoes.

Highlights

  • Microbiota inhabiting midguts of mosquitoes play a key role in the host - parasite interaction and enhance vectorial capacity of viral diseases like dengue and chikungunya fevers

  • The family Enterobacteriaceae of phylum Proteobacteria was dominant in both species of Aedes mosquitoes

  • Some bacterial genera Enterobacter and Acinetobacter isolated in this study are known to play important roles in parasite-vector interaction

Read more

Summary

Introduction

Microbiota inhabiting midguts of mosquitoes play a key role in the host - parasite interaction and enhance vectorial capacity of viral diseases like dengue and chikungunya fevers. The mosquitoes Aedes aegypti and Aedes albopictus are considered major public health problems. Recent reports have provided evidence of the involvement of Ae. aegypti and Ae. albopictus in outbreaks of arboviral diseases in different parts of the globe [1, 2] including dengue and chikungunya fevers. Population growth, rapid urbanization, human travel and failures of preventive public-health measures are the major factors for increasing dengue fever cases [3,4,5,6,7,8]. Dengue cases are increasing in urban areas, and in rural areas [9]. About 2.5 billion people are estimated to be at risk of dengue infection with 50–100 million infections occurring annually, worldwide [10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call