Abstract

BackgroundThe spread of MRSA strains at hospitals as well as in the community are of great concern worldwide. We characterized the MRSA clones isolated at Tunisian hospitals and in the community by comparing them to those isolated in other countries.ResultsWe characterized 69 MRSA strains isolated from two Tunisian university hospitals between the years 2004-2008. Twenty-two of 28 (79%) community-associated MRSA (CA-MRSA) strains and 21 of 41 (51%) healthcare-associated MRSA (HA-MRSA) strains were PVL-positive. The PVL-positive strains belonged to predicted founder group (FG) 80 in MLST and carried either type IVc SCCmec or nontypeable SCCmec that harbours the class B mec gene complex. In contrast, very diverse clones were identified in PVL-negative strains: three FGs (5, 15, and 22) for HA-MRSA strains and four FGs (5, 15, 45, and 80) for CA-MRSA strains; and these strains carried the SCCmec element of either type I, III, IVc or was nontypeable. The nucleotide sequencing of phi7401PVL lysogenized in a CA-MRSA strain JCSC7401, revealed that the phage was highly homologous to phiSA2mw, with nucleotide identities of more than 95%. Furthermore, all PVL positive strains were found to carry the same PVL phage, since these strains were positive in two PCR studies, identifying gene linkage between lukS and mtp (major tail protein) and the lysogeny region, both of which are in common with phi7401PVL and phiSa2mw.ConclusionsOur experiments suggest that FG80 S. aureus strains have changed to be more virulent by acquiring phi7401PVL, and to be resistant to β-lactams by acquiring SCCmec elements. These novel clones might have disseminated in the Tunisian community as well as at the Tunisian hospitals by taking over existing MRSA clones.

Highlights

  • The spread of Methicillin Resistant Staphylococcus aureus (MRSA) strains at hospitals as well as in the community are of great concern worldwide

  • Antimicrobial susceptibility The community-associated MRSA (CA-MRSA) strains were resistant to gentamicin (7%), kanamycin (89%), amikacin (86%), tobramycin (18%), tetracyclines (75%), ofloxacine (11%), ciprofloxacin (36%), erythromycin (46%), clindamycin (14%) and rifampicin (4%)

  • The healthcare-associated MRSA (HA-MRSA) strains were resistant to gentamicin (38%), kanamycin (90%), amikacin (90%), tobramycin (26%), tetracyclines (88%), ofloxacine (30%), ciprofloxacin (45%), erythromycin (55%), trimethoprimsulfamethoxazole (15%), chloramphenicol (7.5%), clindamycin (18%), rifampicin (32%) and fosfomycine (10%)

Read more

Summary

Introduction

The spread of MRSA strains at hospitals as well as in the community are of great concern worldwide. We characterized the MRSA clones isolated at Tunisian hospitals and in the community by comparing them to those isolated in other countries. The spread of antibiotic resistance among Staphylococcus aureus strains is of great concern in the treatment of Staphylococcal infections. Since the first Methicillin Resistant Staphylococcus aureus (MRSA) strain was reported in England in 1961 [1], MRSA has become one of the most prevalent pathogens that cause nosocomial infections throughout the world. At least 11 types of SCCmec elements have been identified [12,13,14]. MRSA clones are defined by the combination of the genotype of the S. aureus strain and the type of SCCmec [15]. By using molecular epidemiological techniques, it became evident that CA-MRSA strains were distinct from those of healthcare-associated

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.